
353 

A study of natural convection above a line fire 

By SHAO-LIN LEE 
Department of Mechanical Engineering, North Carolina State College 

AND H. w. EMMONS 
Pierce Hall, Harvard University 

(Received 17 April 1961) 

The behaviour of a natural convection plume above a line fire is studied both 
theoretically and experimentally. In  the theoretical treatment, a turbulent 
plume above a steady two-dimensional finite source of heated fluid in a uniform 
ambient fluid is investigated. By the use of the lateral entrainment assumption, 
a quadrature solution has been obtained for each of two separate ranges of a 
source Froude number, F > 1 or F < 1. In  neither of these cases can the finite 
width line source be accurately represented by an equivalent mathematical 
line source at a lower level. Only the special case, F = 1, can be so represented 
and its solution is discussed. 

In  the experimental treatment, hot gases, resulting from the burning of a 
liquid fuel in a long channel burner, are driven upwards by buoyancy and gradu- 
ally cooled down by the entrainment of ambient air. The average temperature 
along lines parallel to the channel burner was measured by a piece of resistance 
wire. For the case of a non-luminous diffusion flame, the effective radiation loss 
to the surroundings was assumed to be negligible, and, by a comparison of the 
energy flux supplied from the fuel and the energy flux contained in the plume, 
the characteristic turbulence entrainment coefficient is determined. By the alter- 
nate use of either an absorbing or a reflecting surface for the table-top surround- 
ing a luminous flame, a measurement was made of the energy radiated from the 
flame that was intercepted by the fire surroundings and subsequently returned 
to the buoyancy plume by heating the ingested air. These measurements agree 
with estimates computed from such data as are available. The experimental 
results relating to the behaviour of the convection plume agree closely with the 
theoretical predictions in all cases. 

1. Introduction 
A line fire exhibits a complex interaction of diverse phenomena. Hot combus- 

tion products are driven upwards by natural convection, thus inducting air and 
fuel for further combustion. Heat is transferred downward by various mechanisms 
to maintain the combustion temperature in the fresh fuel and air and, if the fuel 
is liquid, to continue the evaporation process. Simultaneously, interchange of 
energy between the fire and the various elements of its environment also occur. 
One of the effects of this phenomenon is the instability of the inflowing air, 
which results from heat transferred from luminous flames to the surrounding 
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surface by radiation and thence to the inducted air by conduction and convection 
as noted by Emmons (1959). 

No attempt is made to solve the flame-fuel evaporation problem, but rather 
attention is given only to the natural convection above the flames. Only the 
turbulent flow regime is considered. Experimentally, measurements are made 
above the level of the flames while theoretically the whole fire process is replaced 
by a horizontal source of heat, momentum and energy, infinitely long and of 
finite width. In  the theory presented these may be varied independently. Since 
the experiments were conducted in the laboratory, the plumes were only a few 
metres high and atmospheric variations were negligible. The present work, there- 
fore, extends previous work by the inclusion of arbitrary fire width, and arbitrary 
momentum and energy sources, rather than the line fire only. 

2. Theoretical investigation 
It is assumed that turbulent flow is fully developed and thus, as a consequence, 

molecular transfer mechanisms are negligible relative to the turbulent transfer. 
It is also assumed that local density variations are everywhere small compared 
to some reference density in the field. Although natural convection of this 
nature is produced by a source of heat, it is the buoyancy rather than the thermal 
properties of the flow which is fundamental to the phenomenon. Therefore, 
although the buoyant force due to density difference is sufficiently great to 
produce vertical acceleration, the corresponding variation in the mass density 
of the fluid undergoing acceleration is sufficiently small, in comparison with the 
density itself, to be neglected in the continuity and energy equations and the 
inertia term of the momentum equation. 

In  addition, we make the ‘ boundary-layer ’ assumption that transverse 
accelerations are small in comparison with those in the vertical direction, and 
that turbulent mixing in the vertical direction is small in comparison with that 
in the horizontal direction. A consequence of this is that the pressure has essen- 
tially no horizontal variation. 

Let the origin 0 represent the location of the centre of a two-dimensional 
finite source of width b, (accurately defined by equation (8) applied at  x = 0). 
The local mean component of velocity in the vertical direction x is denoted by u, 
and that in the y-direction (in the horizontal plane, normal to the fire) is 
denoted by v. 

Under the foregoing assumptions the fundamental equations of motion reduce 
to the equation of continuity 

au av 
ax ay -+- = 0, 

the simplified equation of conservation of vertical momentum 

au au A~ i ar 
ax a Y  P1 Play’ 

 AT)  A AT) 1 aw 
ax aY PlC, * 

u-+v- = -+-- 

and the simplified equation of conservation of energy 

U- +v-==- (3) 
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Here p1 is the mass density of undisturbed ambient fluid, and 
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AY = 9AP = d P 1 - P )  

is the local buoyancy, where p is the local mass density, y the local weight den- 
sity, and g the gravitational acceleration. Also, T = -pief is the Reynolds 
stress, u,, w, being fluctuating velocities in the x- and y-directions respectively; 
AT = T - T,, where T is the local time-mean temperature, and T, the tempera- 
ture of undisturbed ambient fluid. Lastly, C, is the specific heat at constant 
pressure, and w = -plCpvfATf is the eddy heat transfer, where AT, is the 
fluctuating temperature difference. 

Since v = 0 a t  y = 0 by symmetry, integration of equation (1) with respect to 
y gives & j-ruay+ v(x, 00) = 0. (4) 

This equation states that the increase of ascending mass in a heated plume is due 
to the lateral entrainment of the ambient fluid. 

Since no work is applied at either y = 0 or y = co and the flow is symmetrical 
with respect to y = 0, therefore r = 0 at both y = 0 and y = co. Integration of 
equation (2) with respect to y by parts, with use of equation ( l ) ,  gives 

This equation states that the increase of vertical momentum of ascending mass 
of heated fluid is due to the buoyancy effect caused by the density difference. 

Since no heat is added at  either y = 0 or y = 00 and the flow is symmetrical 
with respect to y = 0, therefore w = 0 at  both y = 0 and y = co. By the assump- 
tion that the ambient fluid is undisturbed, AT = 0 a t  y = co. Integration of 
equation (3) with respect to y, using equation (1) and the assumption of small 

~~ 

density variation, gives 
g / r u A y d y  = 0. 

This equation states that the buoyancy flux of an ascending mass of heated fluid 
is conserved. 

When a stream of fluid is in contact with another stream, the eddies which 
cause transfer of matter between them are characterized by velocities propor- 
tional to the relative velocity of the two streams. This can be seen from dimen- 
sional considerations, since if the mutual entrainment is turbulent the only 
quantity determining the motion is the relative velocity of the two streams. This 
was also shown by the experiment of Kuethe (1935) on the mixing at the edge 
of a jet. The rate at  which the bounding edge of a heated plume expands and 
absorbs the surrounding fluid into the plume may similarly be assumed propor- 
tional to the velocity at  that level. As first suggested by Taylor (1945) and later 
adopted by Morton, Taylor & Turner (1956) and Morton (1959), the rate at  
which fluid is entrained into the heated plume is taken as proportional to the 
vertical velocity on the axis of the plume, thus 

v(x, 00) = au(x, O ) ,  (7) 

where a is the entrainment constant. 
23-2 
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Rouse, Yih & Humphreys (1952) have obtained velocity and temperature 
measurements of heated plumes above a line of small gas flames designed to 
simulate a line heat source. Their results show the Gaussian profiles 

exp ( - 32y2/x2) and exp ( - 41y2/x2) 

for the velocity and temperature measurements, respectively. Since the entrain- 
ment constant a is by definition associated with the velocity profile rather than 
the temperature profile, it  will be appropriate to seek a similarity solution for 
which a: measures the rate of flow into a heated plume, with velocity profile 
characterized by a horizontal length-scale b, and with an associated buoyancy 
profile of the same shape but with a length-scale hb. a: and h are assumed to be 
universal constants. 

Consider a two-dimensional heated plume generated from a finite source in 
an incompressible environment. The plume will be assumed to have Gaussian 
profiles of time-mean vertical velocity and time-mean buoyancy: thus 

(8) 
where u ( x )  = u(x ,  0) is the time-mean vertical velocity on the axis of symmetry 

( 9 )  
of the plume, and 

where Ay(x )  = Ay(z ,  0) is the time-mean buoyancy on the plume axis. The finite 
source will be characterized by b(0)  = b,, u (0 )  = uo and Ay(0)  = Ay,. Sub- 
stituting equations (8) and ( 9 )  into equations (4) )  (5) and ( 6 ) )  we have the equa- 
tions of continuity, conservation of vertical momentum and conservation of 

u(x ,  Y) = u ( x )  exp ( - y2/b2), 

AY(x, 9) = Ay(x )  exp ( -y2/h2b2), 

energy d 2 
- [ub] = - a : ~ ,  
dx 7d 

d A7 
- [u2b] = 24 hgb - , 
dx Y1 

d 
dx 
- [ubAy] = 0, 

subject to the boundary conditions 

b = b,, u = u,, A y  = Ayo a t  x = 0. (13) 
With the following transformations designed to remove all unnecessary 

(14) 

coefficients, X' = (2 /d)a:x /bo ,  
b' = b/bo, 

we have, from equations (10) to (13)) the equations 

d 
- [ ~ ' b ' ]  = u', 
dx' 
d 

dx' 
- [ ~ " b ' ]  = b'p', 

d 
dx' 
- [u 'b '~ ' ]  = 0, 
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subject to the boundary conditions 

b ’ =  1, u’ = F ,  p’ = 1 at x’ = 0, 
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(18) 

where 
2 4  la1 y1 + 

F = (;) (----) uo. 
Y Abo AYO 

We note that this group can be written 

a source Froude number of the usual form uo/(ybo)g modified by factors (2/7r)i 
to account for the Gaussian distribution, (“/A)& to account for the difference 
between velocity and buoyancy profiles, and (Ayo/yl)* to account for the actual 
effective density difference. This Froude number plays an essential role in what 
follows. Equation (17) can be immediately integrated to give 

u’b’p’ = F ,  (19) 

by the use of which equation (16) becomes 

d F 
ax U 
- [U’‘%’] = 7.  

To solve equations (15) and (20) introduce the ‘mass flux’ and ‘momentum 
flux ’ as two new variables 

N = u’b’, M = U‘2b’. (21) 

Thus we get 
dN M 
dx‘ - N ’ 

dM FN 
dx‘ - M ’ 
_ _ - -  

subject to the boundary conditions 

N =  F ,  M = F2 a t  x’= 0. (24) 

By eliminating x’ and integrating, we find that 

F N 3  = M 3 + c ,  (25) 

where c = F4( 1 - IP). We note that both mass and momentum flux are positive 
and by equations (22) and (23) increase with increasing x’, although c may be 
zero or have either sign. 

The position in the plume is now found by integrating equation (22), i.e. 

It is convenient to consider separately three cases, c < 0, c = 0, c > 0, and 
arrange the integral for graphical or numerical evaluation. The three ranges 
correspond to F < 1, F = 1, and F > 1, respectively. 
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Cuse I. F = 1, the line source 

For P = 1, c = 0, equations ( 2 5 )  and (26 )  give 

and 

N = M  
x’ = N - I ,  

which together with equations (19) and (21) give 
1 

x’+ 1 
U‘ = 1, b‘ = x’+1, p’ = __ 

These equations are plotted in figure 1. 

(29) 

Dimensionless vertical distance x’ 

FIGURE 1. Graphical representation of the theoretical solution for a plume issuing 
from a neutral source, P = 1. 

If we introduce the conserved buoyancy flux across any horizontal cross- 

we have, from equation (29), the familiar forms 

u = {*( 1 + h2)}1/r a-* &*, 
b = 2n-4 CLX + bo, 

If some arbitrary point in the plume were regarded as the source at  which the 
convection started, we would compute a source Froude number of F = 1 inde- 
pendent of location. Thus, the above solution describes the convection above a 
line source bo = 0 in which case the velocity u = const., the plume ‘width’ b 
is proportional to x, while the buoyancy Ay/yl is inversely proportional to x. 
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Furthermore, for a finite width line source, the whole convection column can 
be regarded as arising from a line source situated a distance x0 = &b0/2a below 
the real source. We note that the equivalent line source has a finite buoyancy 
flux if boAyo is constant; i.e. if the density difference becomes infinitely great as 
the source width goes to zero. 

Case I I .  Plume issuing from a restrained source (F < 1) 

The integral of equation (26) is expressible as an incomplete beta function. 
However, direct numerical integration is more convenient. For this purpose the 
parameters are removed by setting 

N = p ~ ,  (32) 

with 
. I  

There results 

where 

v d v  
X' = {F'( 1 - F')}* 

v = (1-F2)-*-, 
F 

(33) 

(34) 

vo = (1 - F2)-*. ] 
These integration limits are both greater than 1, the upper limit being larger 
than the lower limit. Since for the Froude number limits of this case F = 0, 
F = 1, v has limits of 1 and co, we define 

v d v  
= Jl pI$' (35) 

and the height scale in the convection plume is given by 

X' = {F'( 1 - F2)}* {I,(v) - Il(v0)}. (36) 

Thus the actual plume may be regarded as a section of the plume arising from 
a virtual source at  a distance {F2(1- F2)}*Il(vo) below the real source. The 
strength of the real source is specified by its 'mass flux' No = P, while the 'mass 
flux' increases along the plume as N = F( 1 - F2)* v increases. 

From equations (19), (21), (25) and (32)' the physically interesting quantities 
are given as follows : 

plume half-width b' = {F2( 1 - F2)}* ~ 

(v3- 1)* 
( ~ 3 -  1)* velocity u' = F*-, 

V 

buoyancy 
1 

(1 - F2)* v' 
pj = ___- 

(37) 

The integral I1(v)  was evaluated graphically and the physical plume charac- 
teristics are plotted in figure 2. The real plume may be visualized from this figure 
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by imagining the actual source located at  a distance to the right of the origin 
given by 

xo” = 4 = 11{( 1 -P2)-”, 
{P2( 1 - P”}$ 

while other higher plume points appear to the right of the actual source. The 
plume shape is particularly interesting. For a real source with P < 2-* the plume 
width first decreases and then increases again. Furthermore, any plume a t  great 
height behaves as though it arose from a line source located at  a distance (in 
the scale of equation (37)) of 0.7 below the virtual origin. 

0 1 2 3 4 

Modified distance above virtual source I,(v) 

from a restrained source (see equation (33)), P < 1. 
FIGURE 2. Graphical representation of the theoretical solution for a plume issuing 

Case I I I .  Plume issuingfrom an impelled source (P > 1) 

We again remove the parameters from the integral of equation (26) by setting 

where now 

N = Pv, 
p = F(P2 - 1)i. 

The resulting integral for graphical evaluation is 

with 

v, = (P2- I)-$, 1 
where 0 < v, < v < 00. 

For this case we use zero as the lower limit and define 

(39) 
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from which the position in the plume is computed as 

x' = (P(P2- l ) } * { 1 2 ( V )  - 1 2 ( Y o ) } .  (43) 

By equations (19), (21), (25) and (39), the physically interesting quantities are 
obtained : 

plume half-width b' = {F2(F2 - 1))f ___ 

velocity 

buoyancy 

(44) 

Modified distance above virtual source 12(v) 

from an impelled source (see equation (43)), F > 1. 
FIGURE 3. Graphical representation of the theoretical solution for a plume issuing 

Curves of these plume properties are given in figure 3. Again the origin of the 
distance scale may be regarded as a virtual source with the real source located 
at a distance 

and the real plume given by the curves from the real source to infinity. The plume 
grows in size rapidly at  first and then more and more slowly. In  this case too, the 
plume at great heights becomes like the plume from a line source located a t  a 
distance of 0.7 below the virtual source. 

We note that both cases I1 and I11 approach the case of F = 1 as height 
increases. F = 1 corresponds to a balance between inducted mass increase and 
buoyancy which just maintains the vertical velocity constant. If the plume 
velocity is relatively too small, i.e. P < 1, the plume grows slowly or even con- 
tracts to raise the local Froude number. If, on the other hand, the plume velocity 
is too high, as in a heated jet, i.e. F > 1, the plume grows more rapidly, decreasing 
the velocity. 
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3. Experimental investigation 
The channel burner, 0.564in. wide, 0.282in. deep and 78in. long, is cooled 

on the sides by a water-jacket, which controls the fuel consumption rate, and 
is connected by inlets underneath to a metered steady fuel supply system. On 
either side of the channel burner there is an 18in. wide asbestos side plate set 
flush with the sides of the channel burner to prevent any entrainment of air from 
below. Against each end of the channel burner stands a vertical asbestos end 
plate to prevent the entrainment from the ends. A view of the apparatus is 
shown as figure 4 (plate 1). Except for cases with very low fuel consumption rates, 
the flame from the channel burner fluctuates both with time and location along 
the length of the channel burner. The average temperature at different heights 
was measured with a 40 in. piece of pure nickel resistance wire 0.002 in. in dia- 
meter suspended parallel to the channel burner. Two fuels were chosen, acetone 
and methyl alcohol, because they differ considerably from one another in radia- 
tion from the flames. Two different kinds of surface were chosen for the side 
plates, aluminium foil surface and bare asbestos surface, because they react 
very differently to radiation. 

( A )  Analyses of asymptotic behaviour of plumes 

For either methyl alcohol or acetone, Gaussian profiles of the natural convection 
plume are found to prevail at  all measurable heights and the corresponding values 
of the characteristic buoyancy half-width are thus computed. For each plume 
the values of the slopes d(y,/Ay)/dx and d(hb)ldx were obtained graphically from 
the measured centre-line buoyancy and Gaussian width respectively and are 
found to approach their respective asymptotic values. 

These asymptotic values are given in a convenient form by equation (31) 

The energy flux Q in this equation could be computed from the rate of fuel use 
and the fuel properties if it  were not for radiation losses. If radiation is negligible, 
the energy flux from the fuel Q is 

where q represents the mass consumption rate of fuel per unit length of burner, 
H the heat of combustion per unit mass of fuel, and 6h the heat removed by the 
cooling water per unit mass of fuel burned. 

(a )  Convection plumes above a non-luminous diffusion fzame of methyl alcohol 

Since radiation is relatively unimportant in the process of heat transfer from 
a non-luminous flame, the surface condition of the side plates would be expected 
to have relatively little effect on the behaviour of the convection plume above 
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the flame. Experiments with asbestos board side plates and bright aluminium 
foil side plates gave nearly identical convection plumes with the methyl alcohol 
flames. Thus the heat released from chemical reaction minus the amount removed 
by cooling water is carried away by the convection plume and Q equals Q. 
Therefore the values of the assumed universal constants a and h can be computed 
from equation (46) and the asymptotic data. We find a = 0.16, h = 0.9, which 
check very well with values computed from results of velocity and temperature 
measurements by Rouse et al. (1952) from natural convection plumes above a 
simulated line buoyancy source. Furthermore, the value of a also checks very 
well with a value computed from velocity measurements of a turbulent two- 
dimensional free jet by Reichardt (1942). 

(b)  Convection plumes above a luminous diffusion Jlame of acetone 

Since in a luminous flame carbon particles radiate energy to the surroundings, 
the value of Q in the convection plume is usually smaller than that of Q. The 
difference Q-Q is the net radiation loss from the flame-plume system to the 
surroundings. The results of experimental measurements with asbestos and with 
aluminium side plates are shown in figure 5 .  

I o 1 Acetone 
_"..1""." .".. 

based on a simplified radiation model 

i-- 0.10 f: : 9 
I I I I I I I I I I & 

Fuel consumption rate p (g see-l cm-l) 

FIGURE 5. Radiation loss computed from measurements of the plume above a luminous 
diffusion flame of acetone : , with bare asbestos side plates; 0 ,  with aluminium foil- 
covered side plates (estimates based on average temperature of carbon particles and 
emissivity measured by Tankin 1960). 

0 0.002 0.004 0.006 0,008 0010 0.012 0014 0.016 0018 
' 

It is readily seen that the net loss to the surroundings is lower for the case with 
bare asbestos side plates, than for those covered with aluminium foil. This can 
be explained by the difference in the way radiant energy is dealt with by the 
surface of the side plates in the two cases. The bare asbestos surface has a very 
high emissivity ( E  = 0.96) and thus absorbs almost all of the radiant energy from 
the flame intercepted by it. The asbestos surface thus heated will give up heat by 
conduction to the adjacent air, which is then convected into the flame-plume. 
On the other hand, the aluminium foil surface has a very low emissivity 
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(e = 0.087) and will reflect almost all of the radiant energy from the flame 
intercepted by it. Thus all radiation from the flame not directly intercepted by 
the fuel is permanently lost from the convection column. 

To estimate the flame radiation loss, use is made of measurements by Tankin 
(1960) with a bolometer of the average temperature of flame carbon particles, 
and of the emissivity of a luminous diffusion flame of acetone. A simplified line 
radiation source was used to estimate the radiation loss of a flame of approxi- 
mately the same brightness, over the channel burner. The results, shown as solid 
points in figure 5, are in good agreement with findings of the plume measurements. 
The ratio of radiation losses with absorbing and with reflecting side plates based 
on the same simplified radiation model, is also shown in figure 5 as the broken 
curve which checks quite well with findings of the plume measurements at  all 
values of fuel consumption rate. 

(B)  Comparison of theoretical and experimental convection plume results 

It is predicted by the theoretical analysis that the behaviour of a plume above a 
finite source depends on a parameter F which is a function of the source charac- 
teristics, b,, u, and Ayo/yI. It is then desirable to determine the values of F by 
comparing the theoretical predictions with the experimental data. 

It is seen from figures 2 and 3 that the solutions for the variation of plume half- 
width with vertical distance and the location of the actual source above a virtual 
source, when all dimensionless quantities are converted back to physical quanti- 
ties, depend only on two of the three independent characteristics of the source, P 
and 6,. For an origin assumed to be a t  the mean flame height, experimental 
data on the plume half-width are plotted against theoretical predictions based on 
different pairs of trial values of F and b,. By the principle of least squares, the best- 
fit values of F and b, are determined for each case. The corresponding best-fit 
value of Ayo/yl is then determined by comparing the theoretical predictions 
and experimental data on the variation of buoyancy with vertical distance. The 
values of F thus found for an origin assumed to be at  the mean flame height 
are listed in table 1. 

The plumes from a methyl alcohol flame are seen to lie in the region of F < 1, 
while the plumes from an acetone flame are found to lie in the region of F < 1 for 
low burning rates and F > 1 for high burning rates. Very good agreement has 
been found between theoretical predictions and experimental measurements for 
all the experiments performed as shown by the sample comparisons made in 
figures 6 and 7. 

( C )  Interpretation of experimental results with the introduction 
of a simpli$ed flame model 

The rigorous analysis of a flame is extremely complicated. However, if the 
main interest is in the study of the convection plume then the flame itself serve8 
merely as a supplier of heated fluid to the source at the mean flame height for the 
convection problem. Therefore, if we introduce a simplified flame model with 
uniform temperature and vertical velocity distributions along a mean flame 
contour as shown in figure 8, the characteristics of the source can be determined. 
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Based on such a simplified flame model, the energy flux from the flame is 

Q = 2 g 6 0 ~ o - - ,  AYO 
Yl 

where 6, is the half-channel width of the inside burner. The energy flux contained 
in the plume, from equation (30), is 

Acetone Aluminium foil 

Fuel Side plates q (g see-l em-l) F 

Acetone Bare asbestos 0~00110 0.79 
0.00163 0.98 
0.00 19 1 1.33 
0.00268 1.83 
0.0055 3.56 
0.0093 5-85 
0.0138 8.67 
0.0170 10.7 

0.00 100 0.65 
0.00134 0.85 
0.00157 0.98 
0.00254 1.49 
0.0041 2.14 
0.0070 3.74 
0.0103 5.37 
0.0127 6.75 
0.0165 8.82 
0.0187 10.3 

Methyl Bare asbestos 0.000716 0.39 
alcohol 0.000885 0.48 

0.00 158 0.85 

Methyl alcohol Aluminium foil 0.0074 0.40 
0.00158 0.85 

TABLE 1. Values of Froude number at the effective source obtained from 
plume measurements. 

Comparing equations (48) and (49), we have 

Eliminating uo and bo among equations (18), (49) and (50), we then have 

The values of F of the source computed from equation (51) with such data as 
available check closely with those determined from plume measurements as 
shown by the sample comparison in figure 9. 
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4. Conclusions (a )  Theoretical conclusions 

A quadrature solution for a two-dimensional turbulent natural convection plume 
above a finite source has been obtained with the assumptions of lateral entrain- 
ment and similar Gaussian velocity and temperature profiles. A characteristic 
parameter F based on the characteristics of the finite source, has been found to 
describe the behaviour of the plume above that source. Plumes for cases where 
F < 1 and F > 1 behave differently but both approach asymptotically the case 
where F = 1. The solution for the case where F = 1 is identified as the solution for 
a plume above a line buoyancy source situated at a lower level. 

Modified vertical distance above virtual source IZ(v) 

FIGURE 6. Example of comparison between theoretical and experimental results for 
the buoyancy in the plume above an acetone flame, F > 1. 

Bare asbestos 
side plates 

Q 
(g sec-l 
cm-l) 

. 0 0.00191 
6 0.00268 
9 0,0055 
@- 0.0093 

i -0 0.0138 
a 0.0170 

F 
1.33 
1.83 
3-56 covered 
5.85 with 
8.67 

-I- 
Side plates f 

3- 
-h 

aluminium + 
+ I t 10.70 foil 

!I 
(g sec-l 
em-l) 

0.00254 
0.0041 
0.0070 
0.0103 
0.0127 
0.0165 
0.0187 

F 
1.49 
2.14 
3.74 
5.37 
6-75 
8.82 

10.33 

( 6 )  Experimental conclusions 

(i) A Gaussian profile was found to prevail at all measurable heights. 
(ii) Values of the entrainment constant a and the auxiliary constant h obtained 

from methyl alcohol burnings agree closely with those evaluated from the pre- 
viously established data. 
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V I I I I I I I I 
0 1.0 2.0 3.0 4.0 

1 aodified vertical distance above virtual source I,(v) 

FIGURE 7. Example of comparison between theoretical and experimental results for the 
half-width of the plume above an acetone flame, 3’ > 1. The theoretical curve is drawn 
in a continuous line. 

4 P 
(g sec-l (g see-l 
em-l) F em-1) F 

C 0.00254 1.49 
Side plates f 0.0041 2.14 

3- 0.0070 3.74 
$i 0.0103 5.37 

aluminium Lt 0.0127 6-75 
+ 0.0165 8-82 I -I= 0.0187 10.33 

0 0.00191 1.33 
6 0.00268 1-83 

Bare asbestos 9 0.0055 3.56 covered 
@- 0.0093 5.85 with 
-0 0.0138 8.67 I 0.0170 10.70 foil 

side plates 

FIGURE 8. Simplified flame model and the effective finite source 
for the convection plume. 
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(iii) The radiant heat loss from a luminous flame to its surroundings deter- 
mined from measurements on convection plumes agrees with estimates computed 
from such data as are available. The effect the surface condition of the side plates 
has on the behaviour of the plume from plume measurements checks very well 
with that from an estimate based on a simplified radiation source. 

(iv) Experimental results for the natural convection plumes above a line 
fire are found in all cases in good agreement with theoretical predictions for the 
two-dimensional natural convection above a steady finite source of heated fluid. 
An interpretation is provided by the assumption of an effective source based on 
a simplified flame model. 

Fuel consumption rate q (g sec-l cm-l) 

FIGURE 9. Example of comparison between the computed Froude number based on a 
simplfied flame model and the experimentally determined Froude number of an effective 
source for the convection plume above an acetone flame: 0, with bare asbestos side plates; 
0, with aluminium foil covered side plates. The two theoretical curves are drawn as 
continuous lines, the respective curve being the one closest to the experimental results. 
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